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Abstract

This work proposes a general framework to quantify uncertainty arising from geometrical variations in the electrostatic
analysis. The uncertainty associated with geometry is modeled as a random field which is first expanded using either poly-
nomial chaos or Karhunen–Loève expansion in terms of independent random variables. The random field is then treated
as a random displacement applied to the conductors defined by the mean geometry, to derive the stochastic Lagrangian
boundary integral equation. The surface charge density is modeled as a random field, and is discretized both in the random
dimension and space using polynomial chaos and classical boundary element method, respectively. Various numerical
examples are presented to study the effect of uncertain geometry on relevant parameters such as capacitance and net elec-
trostatic force. The results obtained using the proposed method are verified using rigorous Monte Carlo simulations. It has
been shown that the proposed method accurately predicts the statistics and probability density functions of various rele-
vant parameters.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

An electrostatic analysis is required in applications such as – computational analysis of micro electrome-
chanical systems (MEMS) [1–3] to compute the electrostatic force acting on the microstructures, modeling
of interconnect circuits to extract the capacitance [4], etc. Over the years, various approaches have been used
to compute the surface charge density accurately and efficiently. A boundary integral equation has been pre-
sented in [5] to treat the exterior electrostatics problem [6] in an efficient manner. A Lagrangian boundary inte-
gral equation has been derived in [7] to efficiently compute the surface charge density for the case of
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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deformable conductors. These methods assume that the geometry of the conductors in known in a determin-
istic sense. However, based on the manufacturing processes used, there is always some geometrical uncertainty
associated with the conductors such as the dimensions or the gap between the electrodes, etc. Moreover, in
applications where various physical fields interact in addition to the electrical field, uncertainties in the geom-
etry of the conductors may occur indirectly due to uncertainty in parameters relevant to physical fields other
than the electrical field. For example, for the computational analysis of MEMS, we need to model the inter-
action of mechanical, electrical and possibly fluidic energy domains [8]. Uncertainties associated with the
mechanical or fluidic fields, such as the Young’s modulus, etc., may result in an uncertain deformation
and, hence, uncertain geometry of the conductors. In order to accurately compute the surface charge density
and other output parameters such as capacitance and electrostatic force, etc., it is required to account for these
geometrical variations in the numerical simulation. Specifically, the problem that we pose here is as follows –
consider the two conductors as shown in Fig. 1, such that the geometry of one (or both) of the conductors is
uncertain. The problem then is to quantify the uncertainty associated with the surface charge density resulting
from the given variation in the geometry of the conductors.

The computational methods available to model uncertainties can be broadly classified into two major cat-
egories – methods based on a statistical approach and methods based on a non-statistical approach. The sta-
tistical approach includes methods such as classical Monte Carlo simulations [9,10] and various sampling
schemes [11–13] such as stratified sampling, Latin hypercube sampling, etc. Since the accuracy of these meth-
ods depends on the sample size, simulations can become prohibitively expensive, especially for situations
where it is expensive to solve the problem even in the deterministic case.

The most important non-statistical approach pioneered by Ghanem and Spanos [14] is polynomial chaos.
Polynomial chaos is essentially a spectral expansion of the stochastic processes in terms of the orthogonal
polynomials as given by Wiener’s homogeneous chaos theory [15]. The homogeneous chaos expansion is based
on Hermite polynomials and leads to fast converging algorithms when the underlying random variables are
Gaussian. This idea was further generalized by Xiu and Karniadakis [16], to obtain exponentially converging
algorithms even for non-Gaussian random variables, and has been applied to model uncertainty in various
problems such as diffusion [17], fluid flow [18] and transient heat conduction [19].

The polynomial chaos expansion forms basis for the spectral stochastic finite-element method (SSFEM),
where the uncertainty is treated as an additional dimension and the field variables are expanded along the ran-
dom dimension using polynomial chaos expansion. SSFEM has been applied to a variety of problems [20–23],
including those with uncertainty in their boundary conditions [24,25]. A stochastic Lagrangian approach
based on SSFEM is presented in [26] for quantifying uncertainty propagation in finite deformation problems.
Dasgupta et al. [27] explored the stochastic boundary element method (SBEM) to model the variation in
geometry. A spectral stochastic boundary element method (SSBEM) has been presented in [28] to model geo-
metrical uncertainties in elastostatic and elastodynamic problems. The uncertainty in boundary geometry is
represented using Karhunen–Loève expansion, and the variation of the boundary matrices associated with
the geometrical fluctuations is approximated by the Taylor expansion.
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Fig. 1. A two-conductor system with uncertain geometry.
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This work presents a general framework to quantify uncertainty associated with the surface charge density
and various outputs of the electrostatic analysis such as capacitance and net electrostatic force, arising from
uncertain geometry. The uncertainty associated with the geometry is modeled as a random field which is first
expanded using either polynomial chaos or Karhunen–Loève expansion in terms of independent random
variables. The random field is then treated as a random displacement applied to the conductors defined
by the mean geometry, to derive the stochastic Lagrangian boundary integral equation in a manner analo-
gous to the Lagrangian boundary integral equation for the case of deformable conductors [7]. The surface
charge density is modeled as a random field, and is discretized both in random dimension and space using
polynomial chaos and classical boundary element method, respectively. Various numerical examples are pre-
sented and the results obtained using the proposed method are verified using rigorous Monte Carlo
simulations.

The paper is organized as follows: In Section 2, we first present two most widely used expansions – Karh-
unen–Loève (KL) expansion and Polynomial Chaos expansion, to represent random fields in terms of inde-
pendent random variables. In Section 3, we present the Lagrangian boundary integral formulation for the
electrostatics problem. In Section 4, we then develop the stochastic Lagrangian boundary integral equation
and describe the discretization procedure both in the random dimension and space. In Section 5, we present
some numerical examples in order to demonstrate the proposed method to handle geometrical uncertainties in
the electrostatic analysis. We finally conclude the discussion in Section 6.
2. Spectral stochastic representation

Let D be a domain in Rd ; d ¼ 1; 2 and x 2 D. Let ðH;B;PÞ denote a probability space, where H is the set of
elementary events, B is the r-algebra of events and P is the probability measure. The symbol h specifies an
elementary event in H and is referred to as the random dimension. Then, all real valued functions nðhÞ defined
on H are known as random variables and functions wðx; hÞ defined on D · H are known as random fields or
processes. Uncertainties can be described using these stochastic quantities – uncertain parameters are modeled
as random variables and uncertain spatial functions are represented as random fields.

From a numerical viewpoint, the random fields need to be discretized both in the random dimension h and
the spatial dimension x. Thus, we seek a stochastic discretization that represents a random field in terms of
finite number of independent random variables. Here, we present two spectral expansion methods – Karh-
unen–Loève expansion (KLE) and polynomial chaos expansion (PCE), which are most widely used for the
discretization of random fields [14,29].

2.1. Karhunen–Loève (KL) expansion

Let wðx; hÞ denote a random field, which we seek to discretize, with a correlation function Cðx1; x2Þ, where
x1 and x2 are the spatial coordinates. The KL expansion is based on the spectral expansion in terms of the
eigenfunctions of the covariance kernel Cðx1; x2Þ [30]. By definition, the covariance kernel is bounded, sym-
metric and positive definite. This fact simplifies the analysis as it guarantees that all the eigenfunctions are
mutually orthogonal and form a complete set. The KL expansion can be written as
wðx; hÞ ¼ �wðxÞ þ
X1
i¼1

ffiffiffiffi
ki

p
niðhÞfiðxÞ; ð1Þ
where �wðxÞ is the mean of the random field and fniðhÞg forms a set of uncorrelated random variables. More-
over, fi and ki form the eigenvector–eigenvalue pair of the covariance kernel such that,
Z

D
Cðx1; x2Þfiðx2Þdx2 ¼ kifiðx1Þ: ð2Þ
In practice the expansion in Eq. (1) is truncated after a finite number of terms M, which leads to a trun-
cation error �M. As compared to other expansion methods, which use some orthonormal functions ffig,
the KL expansion is optimal in the sense that the mean-square error

R
D �

2
M dx is minimized.
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The applicability of the KL expansion depends on the ability to solve the integral equation (2). For certain
choices of the covariance kernel and domain D, analytical solution exists for Eq. (2) as given in [14]. However,
for general cases, we need to employ a numerical solution procedure, which is detailed in [14]. We must note that
KL expansion requires the covariance function of the random field being expanded, which in general is not
known a priori. Hence, KL expansion can only be used to represent the uncertain input random fields, for which
the covariance structure is known. However, it cannot be implemented for a random field, which may be the
unknown in a stochastic partial differential equation (SPDE), since its covariance function and therefore its eigen-
functions are not known. This problem can be avoided by using an alternative expansion, as described next.

2.2. Polynomial chaos expansion

The polynomial chaos expansion is essentially a spectral expansion of the random field in terms of the
orthogonal polynomials in multi-dimensional random variables. The original polynomial chaos [15] employs
Hermite polynomials in terms of the Gaussian random variables, and such an expansion converges to any L2

function in the probability space in accordance with the Cameron–Martin theorem [31]. Let fniðhÞg1i¼1 be a set
of orthonormal Gaussian random variables. Using this, the polynomial chaos expansion of a second-order
random process or field wðx; hÞ is given as
wðx; hÞ ¼ a0ðxÞC0 þ
X1
i1¼1

ai1ðxÞC1ðni1ðhÞÞ þ
X1
i1¼1

X1
i2¼1

ai1i2ðxÞC2ðni1ðhÞ; ni2ðhÞÞ

þ
X1
i1¼1

X1
i2¼1

X1
i3¼1

ai1i2i3ðxÞC3ðni1ðhÞ; ni2ðhÞ; ni3ðhÞÞ þ . . . ; ð3Þ
where Cnðni1 ; . . . ; ninÞ denotes the polynomial chaos of order n in terms of the multi-dimensional Gaussian ran-
dom variables n ¼ ðn1; . . . ; nn; . . .Þ. For convenience, Eq. (3) is often rewritten as
wðx; hÞ ¼
X1
i¼0

âiðxÞWiðnðhÞÞ; ð4Þ
where there is a one-to-one correspondance between the functions C½�� and W½�� and also between the coeffi-
cients ai1i2... and âi. For the case of one-dimensional Hermite polynomial chaos, n ¼ n1 ¼ n and fWig are sim-
ply the one-dimensional Hermite polynomials given as
W0ðnÞ ¼ 1; W1ðnÞ ¼ n; W2ðnÞ ¼ n2 � 1; W3ðnÞ ¼ n3 � 3n; W4ðnÞ ¼ n4 � 6n2 þ 3; . . . ð5Þ

The functions fWig form an orthogonal basis in the probability space, with the orthogonality relation
hWi;Wji ¼ dijhW2
i i; ð6Þ
where dij is the Kronecker delta and h�; �i denotes the ensemble average which is the inner product given as
hWi;Wji ¼
Z

H
WiðnÞWjðnÞdP: ð7Þ
For the case of Hermite polynomial chaos, dP is the Gaussian probability measure e�
1
2n

Tn dn. We note that
the summation in Eq. (3) is infinite and also each polynomial chaos C½�� is a function of the infinite set
fniðhÞg1i¼1, and is therefore an infinite dimensional Hermite polynomial. However, in practice it is logical to
use a finite-dimensional set fniðhÞgn

i¼1, which yields an n-dimensional polynomial chaos expansion. Also, we
truncate the summation in Eq. (3) up to some finite order p. Thus, the expansion in Eq. (4) can now be written
as
wðx; hÞ ¼
XN

i¼0

âiðxÞWiðnðhÞÞ: ð8Þ
The total number of terms included in the polynomial chaos expansion (N + 1), depends both on the dimen-
sionality n and the highest order p of the multi-dimensional polynomials used, and is given as
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N þ 1 ¼ ðnþ pÞ!
n!p!

: ð9Þ
Although in theory, the Hermite chaos converges to any L2 functionals in the random space, it achieves
optimal exponential convergence rates only for Gaussian or near Gaussian random fields. A more general
framework, known as the generalized polynomial chaos was developed in [16], where the polynomials are cho-
sen from the hypergeometric polynomials of the Askey scheme and the underlying random variables are not
restricted to Gaussian random variables. The type of the random variables is selected based on the random
inputs, and their weighting function in turn decides the type of orthogonal polynomials used as basis in the
chaos expansion. For example, Jacobi polynomials are chosen for Beta random variables and Legendre poly-
nomials are chosen as basis for uniform random variables. The optimal exponential convergence rate was also
demonstrated for the choice of these bases. In this work, for all the examples, we assume the stochastic inputs
to be defined using Gaussian random variables, and hence Hermite polynomials are used as basis in the chaos
expansion.

3. Deterministic Lagrangian electrostatics

In this section, we first present the deterministic Lagrangian boundary integral formulation for the electro-
static analysis of deformable conductors. We consider a two conductor system as shown in Fig. 2. We denote
the initial or undeformed configuration of the two conductors by X1 and X2 with surface or boundaries as dX1

and dX2, respectively. The deformed configuration is denoted by x1 and x2, respectively, with boundaries dx1

and dx2, respectively. The domain exterior to the two conductors is denoted by �x. The electrical potential / is
prescribed on the surface of the two conductors. The objective of the deterministic problem is to find the sur-
face charge density in the undeformed configuration.

3.1. Lagrangian boundary integral equations

The exterior electrostatics problem on �x can be solved efficiently by employing a boundary integral formu-
lation [5] as follows:
/ðpÞ ¼
Z

dx
Gðp; qÞrðqÞdcq þ C; ð10Þ

CT ¼
Z

dx
rðqÞdcq; ð11Þ
Deformation

pP

X x

u

X

Y

Ω2

ω2

Ω1 ω1

dΩ2

dω2

dω1dΩ1

Fig. 2. A two conductor system under deformation.



N. Agarwal, N.R. Aluru / Journal of Computational Physics 226 (2007) 156–179 161
where r is the unknown surface charge density, p is the source point, q is the field point, G is the Green’s func-
tion, dcq represents an infinitesimal line segment at a specified field point q and dx ¼ dx1 [ dx2. In two
dimensions, Gðp; qÞ ¼ � ln jp�qj

2p� , where jp � qj is the distance between the source and the field point and � is
the permittivity of free space. CT represents the total charge of the system, which is set to be zero and C is
an unknown which needs to be computed. Since the integrals in this formulation refer to the deformed con-
figuration, we need to constantly update the geometry whenever the conductors deform.

A Lagrangian approach has been derived in [7] which allows to solve for surface charge density in the
deformed configuration, by solving the electrostatics equations on the undeformed configuration. Since
the stochastic Lagrangian formulation presented later is derived in an analogous manner, we include some
details on the derivation of deterministic formulation as given in [7]. As shown in Fig. 2, we consider a point
P on the boundary dX1 of conductor 1 with the position vector X and an infinitesimal boundary segment
with length dC originating from P. As conductor 1 deforms, point P undergoes a displacement u and moves
to p with the position vector x and the length of the infinitesimal boundary segment changes from dC to dc.
The position of a point x and the length of an infinitesimal line segment dc in the deformed configuration
can be mapped to the corresponding quantities in the undeformed configuration, denoted by X and dC,
respectively as:
x ¼ Xþ u; ð12Þ
dc ¼ ðT � CTÞ1=2dC; ð13Þ
where T is the unit tangent vector to dX1 at point P and C ¼ FTF is the Green deformation tensor. F is the
deformation gradient tensor given by
F ij ¼
oxi

oX j
¼ dij þ

oui

oX j
i; j ¼ 1; 2 for 2D: ð14Þ
Using Eqs. (12) and (13) in Eqs. (10) and (11), the Lagrangian boundary integral equations are given by:
/ðP Þ ¼
Z

dX
GðpðP Þ; qðQÞÞrðqðQÞÞ½TðQÞ � CðQÞTðQÞ�

1
2dCQ þ C; ð15Þ

CT ¼
Z

dX
rðqðQÞÞ½TðQÞ � CðQÞTðQÞ�

1
2dCQ; ð16Þ
where P and Q refer to the positions of source and field points, respectively, in the undeformed configuration
dX ¼ dX1 [ dX2, CðQÞ ¼ FTðQÞFðQÞ, FðQÞ being the deformation gradient tensor and TðQÞ being the tangen-
tial vector at the field point Q in the undeformed configuration. We note that the integrals in Eqs. (15) and (16)
are defined on the boundaries in undeformed configuration dX, and all the quantities inside the integrals are
also appropriately mapped to the initial configuration.

3.2. Spatial discretization – boundary element method

The Lagrangian boundary integral equations (15) and (16) can be solved numerically using the classical
boundary element method (BEM) [32]. In the classical BEM, the surface of the conductors is discretized into
segments or panels and the unknown surface charge density is approximated by using interpolation functions.
The surface charge density rðxðXÞÞ at a point x in the deformed configuration is given as
rðxðXÞÞ ¼
XK

k¼1

rkN kðXÞ; ð17Þ
where K is the total number of panels, rk is the value of surface charge density at point k and N kðXÞ is the
interpolation function of point k evaluated at X. In the collocation method, the centroid of each panel is trea-
ted as a collocation point and the interpolation functions are taken to be piecewise constant, such that the
interpolation function corresponding to each panel is unity for that panel and zero elsewhere. This also implies
that the surface charge density is constant over each panel. Using this in Eqs. (15) and (16) we get,
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/ðP Þ ¼
XK

k¼1

Z
dXk

� 1

2p�
lnjP þ uP � Qk � uQk

jrk½TðQkÞ � CðQkÞTðQkÞ�
1
2dCQk

þ C; ð18Þ

CT ¼
XK

k¼1

Z
dXk

rk½TðQkÞ � CðQkÞTðQkÞ�
1
2dCQk

; ð19Þ
where dXk is the length of the kth panel in the undeformed configuration, Qk is the field point on the kth panel,
uP and uQk

are the displacements at the source point P and the field point Qk, respectively and rk is the con-
stant surface charge density for the kth panel. This leads to the matrix-form as follows:
½M �fRg ¼ fUg; ð20Þ

where M is a ðK þ 1Þ � ðK þ 1Þ matrix and R and U are ðK þ 1Þ � 1 unknown and right-hand side vectors,
respectively. The entries of matrix M are given as
Mði; jÞ ¼
Z

dXj

� 1

2p�
ln jP i þ uP i � Qj � uQj

j½TðQjÞ � CðQjÞTðQjÞ�
1
2dCQj

i; j ¼ 1; . . . ;K

MðK þ 1; jÞ ¼
Z

dXj

½TðQjÞ � CðQjÞTðQjÞ�
1
2dCQj

j ¼ 1; . . . ;K

Mði;K þ 1Þ ¼ 1 i ¼ 1; . . . ;K

MðK þ 1;K þ 1Þ ¼ 0:
Also the vectors R and U are defined as
R ¼

r1

r2

�
�

rK

C

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

U ¼

/ðP 1Þ
/ðP 2Þ
�
�

/ðP KÞ
CT

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
: ð21Þ
The surface charge density rðxÞ can be obtained by solving the linear system given by Eq. (20).

3.3. Computation of outputs

In certain situations the objective of the electrostatic analysis may not be restricted to the computation of
surface charge density, but we may also require to compute certain outputs which depend on the surface
charge density. For example, in the modeling of interconnect circuits or micro-electromechanical (MEMS)
sensors, we might need to compute the self and mutual capacitances of the conductors, for which we need
to compute the total charge on all the conductors. The total charge in the undeformed configuration on con-
ductor 1 can be computed as
Q ¼
Z

dX1

rðxÞ½T � CT�
1
2 dC: ð22Þ
The analysis of MEMS actuators requires the computation of electrostatic pressure, which is then used to
compute the deformation of microstructures, using a mechanical analysis. The electrostatic pressure at x in the
deformed configuration h(x), is given as [33]
hðxÞ ¼ r2ðxÞ
2�

nðxÞ; ð23Þ
where nðxÞ is the unit outward normal at x in the deformed configuration. The electrostatic pressure at X in
the undeformed configuration H(X), can be written as [7]
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HðXÞ ¼ r2ðxðXÞÞ
2�

J ½FðXÞ��T
NðXÞ; ð24Þ
where J is the determinant of F(X) and N(X) is the outward unit normal at X in the undeformed configuration.
4. Stochastic Lagrangian electrostatics

Having described the Lagrangian boundary integral formulation for the case of deformable conductors, we
now proceed to develop the stochastic formulation to handle the geometrical uncertainties. Unlike the previ-
ous case, the geometry of the conductors is not known in a deterministic sense and hence the surface integrals
in the boundary integral equations (10) and (11) cannot be computed. However, this difficulty of having to
compute the surface integrals in the uncertain configuration can be circumvented by using the Lagrangian
boundary integral formulation. The idea is to express the geometry of the conductors as a sum of its mean,
known as the mean configuration, and a zero-mean random field, which represents the uncertainty associated
with this mean configuration. The zero-mean random field is then treated as a random displacement applied to
the conductors defined by the mean configuration, to develop a stochastic Lagrangian formulation analogous
to the case with deterministic deformation. In the stochastic formulation, the mean geometry is analogous to
the initial or undeformed configuration and the uncertain geometry is analogous to the deformed configura-
tion. The objective of this approach is to compute the surface charge density in the uncertain configuration
using the mean configuration.

4.1. Stochastic Lagrangian boundary integral equations

The displacement uðX; hÞ is modeled as a random field which depends both on space and the random
dimension h. Using the techniques described in Section 2, we write a spectral expansion for the random dis-
placement uðX; hÞ as
uðX; hÞ ¼
XM

m¼0

umðXÞWmðhÞ; ð25Þ
where M + 1 is the total number of terms considered in the KL expansion or polynomial chaos expansion, to
represent the random displacement field. In this work, since we do not have any physical deformation for the
conductors, uðX; hÞ is considered as a zero-mean random field. However, in situations when in addition to the
geometrical uncertainties, the conductors also undergo some actual deformation (deterministic or random),
the displacement uðX; hÞ would have a non-zero mean. Such situations can also be handled using this ap-
proach in a straightforward manner.

In a manner similar to the deterministic case, we can define various physical quantities in the uncertain
(deformed) configuration in terms of the quantities in the mean (undeformed or initial) configuration. To
begin with, the position of a point on the uncertain boundary can be written as
x ¼ Xþ uðX; hÞ: ð26Þ

Using Eq. (26) the stochastic Green’s function in two dimensions Gðp; q; hÞ can be written as
Gðp; q; hÞ ¼ GðpðP Þ; qðQÞ; hÞ ¼ � 1

2p�
ln jP � Qþ uP ðhÞ � uQðhÞj; ð27Þ
where P and Q are the source and field points in the mean configuration, p and q are the source and field points
in the uncertain configuration, and uP ðhÞ and uQðhÞ are the random displacements associated with P and Q,
respectively. We can further compute the stochastic deformation gradient FðX; hÞ as
F ij ¼
oxi

oX j
¼ dij þ

XM

m¼0

oum;i

oX j
WmðhÞ i; j ¼ 1; 2 for 2D; ð28Þ
where um;i denotes the ith component of the mth displacement mode vector um.
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As in Eq. (13), we can express the length of an infinitesimal line element dcq at a specified field point q in the
uncertain configuration in terms of the length of the corresponding line element dCQ at the field point Q in the
mean configuration as:
dcq ¼ dCQ½TðQÞ � CðQ; hÞTðQÞ�
1
2; ð29Þ
where CðX; hÞ ¼ FTF is the stochastic Green deformation tensor and TðQÞ is the tangent at the field point Q.
Using Eqs. (27) and (29) we can write the Stochastic Lagrangian boundary integral equations for electrostat-

ics, analogous to Eqs. (15) and (16) for the deterministic case as follows:
/ðP Þ ¼
Z

dX
GðpðP Þ; qðQÞ; hÞrðqðQÞ; hÞ½TðQÞ � CðQ; hÞTðQÞ�

1
2dCQ þ CðhÞ; ð30Þ

CT ¼
Z

dX
rðqðQÞ; hÞ½TðQÞ � CðQ; hÞTðQÞ�

1
2dCQ; ð31Þ
where dX ¼ dX1 [ dX2 represents the mean or undeformed configuration, CðhÞ is an unknown random var-
iable and CT is the total charge, which is set to be zero. We note that all the integrals in Eqs. (30) and (31)
are defined over the mean configuration dX and all the quantities inside the integrals are appropriately defined

in terms of the quantities in the mean configuration. By defining cðQ; hÞ ¼ ½TðQÞ � CðQ; hÞTðQÞ�
1
2, Eqs. (30) and

(31) can be written as
/ðP Þ ¼
Z

dX
GðpðP Þ; qðQÞ; hÞrðqðQÞ; hÞcðQ; hÞdCQ þ CðhÞ ð32Þ

CT ¼
Z

dX
rðqðQÞ; hÞcðQ; hÞdCQ: ð33Þ
4.2. Stochastic discretization – polynomial chaos

Due to the random nature of the problem, in addition to the spatial discretization we also need to consider
the discretization with respect to the random dimension h. We write the polynomial chaos expansion for the
unknown surface charge density rðx; hÞ, and the random variable CðhÞ as follows:
rðx; hÞ ¼
XN

n¼0

rnðxÞWnðnðhÞÞ; CðhÞ ¼
XN

n¼0

CnWnðnðhÞÞ; ð34Þ
where (N + 1) is the total number of terms considered in the truncated polynomial chaos expansion. We note
that the uncertainty associated with the surface charge density is included in the polynomial basis WðnðhÞÞ and
hence the spectral modes rnðxÞ and Cn; n ¼ 0; . . . ;N are deterministic. Now using the expansion given in Eq.
(34) in Eqs. (32) and (33) and replacing WnðnðhÞÞ by Wn for clarity, we get,
/ðP Þ ¼
Z

dX
GðP ;Q; hÞ

XN

n¼0

rnðqðQÞÞWn

 !
dCQ þ

XN

n¼0

CnWn; ð35Þ

CT ¼
Z

dX
cðQ; hÞ

XN

n¼0

rnðqðQÞÞWn

 !
dCQ; ð36Þ
where GðP ;Q; hÞ ¼ GðpðP Þ; qðQÞ; hÞcðQ; hÞ. In order to compute the integrals in the random dimension effi-
ciently, we express GðP ;Q; hÞ and cðQ; hÞ in terms of the orthogonal polynomials fWlg as explained later in
Appendix A,
GðP ;Q; hÞ ¼
XN

l¼0

GlðP ;QÞWlðhÞ cðQ; hÞ ¼
XN

l¼0

clðQÞWlðhÞ: ð37Þ
In order to ensure that the error is orthogonal to the space spanned by the finite dimensional basis functions
fWm; m ¼ 0; . . . ;Ng, we employ Galerkin projection of the above equations onto each Wm, which yields,
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/ðP ÞhWmi ¼
Z

dX

XN

n¼0

XN

l¼0

GlðP ;QÞrnðqðQÞÞhWlWnWmidCQ þ CmhW2
mi; m ¼ 0; . . . ;N ð38Þ

CThWmi ¼
Z

dX

XN

n¼0

XN

l¼0

clðQÞrnðqðQÞÞhWlWnWmidCQ; m ¼ 0; . . . ;N ð39Þ
using the orthogonality relation hWm;Wni ¼ dmnhW2
mi, where h�i ¼ h�; 1i represents the ensemble average. The

above set of equations represent 2ðN þ 1Þ coupled integral equations that need to be solved for 2ðN þ 1Þ un-
knowns, rnðxÞ; Cn; n ¼ 0; . . . ;N . We note that these equations are deterministic as the unknowns frnðxÞg de-
pend only on x and fCng are constants.

4.3. Spatial discretization – BEM

At this point, we introduce the spatial discretization using BEM, as described earlier for the deterministic
case and assume that each of rnðxÞ is constant over each panel, such that
rnðxðXÞÞ ¼
XK

k¼1

rk
nNkðXÞ; n ¼ 0; . . . ;N ; ð40Þ
where NkðXÞ; k ¼ 1; . . . ;K are the piecewise constant shape functions used for the collocation method and K is
the total number of panels. To simplify the expressions we define
emnðP ;QÞ ¼
XN

l¼0

GlðP ;QÞhWlWmWni; m; n 2 ½0;N � ð41Þ

dmnðQÞ ¼
XN

l¼0

clðQÞhWlWmWn; i; m; n 2 ½0;N �; ð42Þ
where the integrals hWlWmWni can be precomputed. Using the above notational simplifications and substitut-
ing the spatial discretization given in Eq. (40) in Eqs. (38) and (39) we get,
/ðP ÞhWmi ¼
XN

n¼0

XK

k¼1

Z
dXk

emnðP ;QkÞrk
ndCk þ CmhW2

mi; m 2 ½0;N � ð43Þ

CT hWmi ¼
XN

n¼0

XK

k¼1

Z
dXk

dmnðQkÞrk
ndCk; m 2 ½0;N �: ð44Þ
This leads to a matrix system
½M �0;0 � � � ½M �0;N
..
.

½M �m;n ..
.

½M �N ;0 � � � ½M �N ;N

2
664

3
775

Ns�Ns

fR1gK�1

..

.

fRmgK�1

..

.

fRNgK�1

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

Ns�1

¼

fU1gK�1

..

.

fUmgK�1

..

.

fUNgK�1

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

Ns�1

; ð45Þ
where Ns ¼ ðK þ 1ÞðN þ 1Þ, and the entries of ½M �m;n; fm; n ¼ 0; . . . ;Ng are given as
Mði; jÞ ¼
Z

dXj

emnðP i;QjÞdCk; i; j ¼ 1; . . . ;K ð46Þ

MðK þ 1; jÞ ¼
Z

dXj

dmnðQjÞdCk; j ¼ 1; . . . ;K ð47Þ

Mði;K þ 1Þ ¼ hWm;Wni; i ¼ 1; . . . ;K ð48Þ
MðK þ 1;K þ 1Þ ¼ 0: ð49Þ
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The vectors Rm and Um; m ¼ 0; . . . ;N are defined as
Rm ¼

r1
m

r2
m

�
�
�

rK
m

Cm

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

Um ¼ hWmi

/ðP 1Þ
/ðP 2Þ
�
�
�

/ðP KÞ
CT

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

: ð50Þ
The matrix system given in Eq. (45) can be solved to obtain the spectral modes rnðxÞ; n 2 ½0;N �.

4.4. Computation of relevant quantities

Having solved for the spectral modes frng, the surface charge density is obtained using Eq. (34):
rðx; hÞ ¼
XN

n¼0

rnðxÞWnðnðhÞÞ:
A random field wðx; hÞ is often characterized by its statistics defined as expectation E½��:
E½gðwÞ� ¼
Z

H
gðwÞdP; ð51Þ
where g is some suitable function. Noting that hW0i ¼ 1 and hWni ¼ 0; 8n > 0, the mean of the surface charge
density �rðxÞ is given as
�rðxÞ ¼ E½rðx; hÞ� ¼ r0ðxÞ: ð52Þ

The standard deviation of the surface charge density mðxÞ can be obtained as
m2ðxÞ ¼ E½ðrðx; hÞ � �rðxÞÞ2� ¼
XN

n¼1

r2
nðxÞhW2

ni; ð53Þ
using the orthogonality relation hWm;Wni ¼ dmnhW2
mi.

As pointed out in the deterministic case, in addition to the surface charge density we may also need to com-
pute the outputs such as, capacitance and force. In a similar fashion as Eq. (22), the total charge in the mean
configuration on conductor 1 can be computed as
QðhÞ ¼
Z

dX1

rðx; hÞ½T � CT�
1
2dC ¼

XN

n¼0

QnðhÞWnðnðhÞÞ; ð54Þ
where QnðhÞ ¼
R

dX1
rnðxÞ½T � CT�

1
2dC. Also, using Eq. (24) the electrostatic pressure in the mean configuration

Hðx; hÞ, is given as
HðX; hÞ ¼ r2ðxðXÞ; hÞ
2�

J ½FðX; hÞ��T
NðXÞ; ð55Þ
where J is the determinant of F and NðXÞ is the unit outward normal at X in the mean configuration.

5. Examples

In this section, we present a few examples where we apply the approach developed in the previous section to
model geometrical uncertainties in the electrostatic analysis. In the first set of examples, we consider the effect
of variation in geometrical parameters during the modeling of interconnect circuits. As the smallest feature
size in circuits drops to submicron levels, interconnect characteristics are becoming increasingly more impor-
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tant. It has been shown that the interconnect parameters determine critical signal delays in circuits. Hence, in
order to ensure the desired circuit performance, it becomes necessary to accurately model the effect of varia-
tions in these interconnect parameters during the design process. The effect of interconnect parameter varia-
tion on circuit performance using statistical methods such as Monte Carlo method, has been studied in [34,35].
Specifically, we consider two cases – single and double lines over a ground plane, and study the effect of vari-
ations in geometrical parameters on the capacitance.

In the second set of examples we consider the effect of geometrical uncertainties during the design of
electrostatically actuated micro-electromechanical systems (MEMS). MEMS devices have been used in wide-
spread applications such as micro-switches, micro-accelerometers, etc. These devices consist of microstruc-
tures that undergo deformation upon the application of an electrostatic actuation force. The electrostatic
force is usually computed using numerical simulations, assuming that the geometry of the conductors in
known in a deterministic sense. However, depending on the manufacturing processes used, there is always
some uncertainty associated with geometrical features such as the dimension of the electrodes or the gap
between the electrodes. In order to predict the effect of these variations and design reliable MEMS devices,
it is required to accurately model these uncertainties during the design process. We specifically consider
two cases – a transverse comb drive and a cantilever beam over a ground plane and study the effect of geo-
metrical uncertainties on the capacitance and the net electrostatic force.

For all the examples considered in this work, we assume that the stochastic geometrical parameters are
defined using Gaussian random variables. Since the actual distribution suitable to model uncertain geometri-
cal features for micro-structures is not known, the Gaussian distribution is selected as it has been traditionally
used to model uncertain parameters in practical applications. Theoretically, the unboundedness of the support
of Gaussian random variables may lead to some problems in the implementation, as the geometrical features
are certainly bounded. However, in practice we obtain meaningful results since for the expected level of uncer-
tainty, the probability of these variables being unbounded is negligible.

5.1. Single line over a ground plane

Consider a rectangular wire with width W ¼ 1 lm and thickness T ¼ 0:2 lm, placed at a distance H from
the ground plane as shown in Fig. 3a. We study the effect of variation in the gap H, on the capacitance
between the wire and the ground plane. The gap is modeled as a random variable and is written as
HðhÞ ¼ Hð1þ mHnðhÞÞ; ð56Þ

where H ¼ 0:2 lm is the mean or average gap, n is a Gaussian random variable with unit variance and mH is the
percentage variation in H. It can be easily seen that the wire placed at a distance H from the ground plane rep-
resents the mean configuration of the two conductors and mH Hn represents variation in the gap. This variation
in the gap is implemented by applying a random translational displacement to the wire in the vertical direction,

given as uðx; hÞ ¼ ½0; mH Hn�T. This displacement can also be identified as the spectral expansion given in Eq. (25)
with only the second term as non-zero, which represents a zero-mean Gaussian random variable.

The surface charge density profile for the mean configuration, obtained using deterministic boundary inte-
gral formulation Eq. (20) is shown in Fig. 4a. The potentials for the wire and the ground plane are set to be
unity and zero, respectively.
H

T

W

Ground Plane

Single Line

H

S WW

Ground Plane

Two Lines

H

Fig. 3. Cross section of interconnect structures. (a) Single line over a ground plane. (b) Double line over a ground plane.
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We first set mH ¼ 0:1, which corresponds to a 10% variation in the gap and use a polynomial chaos expan-
sion of order p = 3 in Eq. (34). The matrix system, given in Eq. (45), resulting from the stochastic Lagrangian
formulation is then solved and the mean and standard deviation for the surface charge density are computed
using Eqs. (52) and (53), respectively. The mean surface charge density �rðxÞ, for the bottom surface of the wire
is plotted along with the error bars �mðxÞ in Fig. 4b.

We now study the effect of variation in H on the capacitance between the wire and the ground plane. In the
deterministic case, the capacitance C1 can be computed as
C1 ¼
Q
V
; ð57Þ
where Q is the total charge on the wire, which can be computed using Eq. (22) and V is the applied potential
on the wire. An empirical formula for the capacitance (per unit length) between a single line and the ground
plane has been derived in [36] and is given as
C1

�
¼ 1:15

W
H

� �
þ 2:80

T
H

� �0:222

: ð58Þ
The relative error of this formula is shown to be within 6% for 0:3 < W =H < 30 and 0:3 < T=H < 30. In this
formula, the first term can be considered as contribution from the lower surface of the line and the second
term represents the side wall contribution. The capacitance in the mean configuration, obtained using the
deterministic BEM formulation and Eq. (58) is shown in Fig. 5 for various values of H.

As shown in Fig. 5, there is a reasonable agreement between the capacitance values computed using the
boundary integral formulation and the empirical formula over a range of H values. Hence, in addition to
the Monte Carlo (MC) simulations, we also use Eq. (58) to verify the results obtained using the stochastic
Lagrangian formulation. In the stochastic case, the capacitance C1ðnðhÞÞ can be computed using Eq. (57)
as for the deterministic case, but the random total charge on the wire is now computed using Eq. (54).

In Fig. 6 we plot the probability density function (PDF) of the capacitance using Monte Carlo (MC) sim-
ulations, polynomial chaos (PC) of several orders and the empirical formula Eq. (58), for mH ¼ 0:1 and 0.2,
which corresponds to a variation of 10% and 20% in H, respectively. For MC simulations we use 30000 real-
izations of H (generated according to the Gaussian distribution), and corresponding to each realization the
deterministic problem is solved and we obtain the capacitance values fC1g. In order to get the PDFs using
PC and the empirical formula, we generate realizations of n in accordance with the Gaussian distribution
and obtain the values fC1ðnÞg. For all the methods, a histogram of these fC1g values is then generated based
on 50 equally spaced bins and the probability density is obtained by normalizing the frequency corresponding
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to each bin with the bin size and the total number of realizations. The PDFs are finally generated by plotting
these probability density values along the centers of the bins.

As can be seen from Fig. 6a, for a 10% variation in H, there is a good agreement amongst the PDFs
obtained using MC simulation, polynomial chaos of order p = 3 and the empirical formula. We also notice
that the PDF obtained using PC expansion converges to the MC result, as we increase the expansion order
p from 2 to 3. Similarly, as can be seen from Fig. 6b, for a 20% variation in H, the PDFs obtained using
the three methods are again in good agreement. The convergence of the polynomial chaos expansion to the
MC result, again improves with increasing order. We also notice that the order of the PC expansion required
to obtain accurate results increases to 6 for the 20% variation case, as compared to 3 for the 10% variation
case. The mean and standard deviation for the capacitance as obtained from different methods are shown
in Tables 1 and 2, for the case of 10% and 20% variation, respectively.
Table 1
Mean and standard deviation for capacitance ½mH ¼ 0:1�

MC PC2 PC3 Emp

Mean [pF/m] 76.8919 76.8918 76.8920 76.2580
Std [pF/m] 5.7482 5.7423 5.7481 5.8329



Table 2
Mean and standard deviation for capacitance, ½mH ¼ 0:2�

MC PC4 PC5 PC6 Emp

Mean [pF/m] 78.8386 78.8396 78.8423 78.8427 78.1703
Std [pF/m] 13.5264 13.5201 13.5573 13.5614 13.5523

170 N. Agarwal, N.R. Aluru / Journal of Computational Physics 226 (2007) 156–179
5.2. Double line over a ground plane

We now consider two identical lines separated by a distance S and placed over a ground plane at a distance
H as shown in Fig. 3b, and study the effect of variation in these two parameters on the total capacitance of
either line. Both the lines have rectangular cross-sections with width W ¼ 1 lm and thickness T ¼ 0:2 lm. The
gap between the lines and ground plane H, and the separation between the lines S are modeled as random
variables and are written as
Fig. 7.
(b) Va
HðhÞ ¼ Hð1þ mHn1Þ SðhÞ ¼ Sð1þ mSn2Þ; ð59Þ

where H ¼ 0:2 lm is the average gap and S ¼ 0:15 lm is the average separation distance between the lines, mH

and mS represent the percentage variation in gap and separation, respectively. n1 and n2 are independent
Gaussian random variables with unit variances. The mean configuration is represented by two wires separated
by S and placed at a distance H from the ground plane. The variation in H and S is implemented by applying a

random translational displacement uL ¼ ½mSSn2; mH Hn1�T to the wire on left, and uR ¼ ½0; mH Hn1�T to the wire
on right.

We set mH ¼ 0:1 and mS ¼ 0:1, which corresponds to a 10% variation in both H and S. For the stochastic
Lagrangian formulation, we use two dimensional polynomial chaos expansions Eq. (34) which consist of 6 and
10 terms for order p = 2 and 3, respectively. As for the single line case, an empirical expression for the total
capacitance of either line per unit length C2, has been derived in [36] and is given as
C2

�0

¼ C1

�0

þ 0:03
W
H

� �
þ 0:83

T
H

� �
� 0:07

T
H

� �0:222
" #

S
H

� ��1:34

; ð60Þ
where C1 is given by Eq. (58). The relative error of this formula is shown to be within 10% for
0:3 < W =H < 10, 0:3 < T =H < 10 and 0:5 < S=H < 10.

As shown in Fig. 7, there is a reasonable agreement between the capacitance values obtained using the
deterministic BEM and the empirical formula given in Eq. (60) over a range of H and S. Hence, in addition
to the MC simulations, we also use the empirical formula to verify the results obtained using stochastic for-
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Table 3
Mean and standard deviation for capacitance ½mH ¼ 0:1; mS ¼ 0:1�

MC PC2 PC3 Emp

Mean [pF/m] 90.4041 90.4011 90.4022 88.2696
Std [pF/m] 6.1416 6.1402 6.1532 5.7765
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mulation. For the MC simulations, we use 40,000 samples each for n1 and n2 generated according to the
Gaussian distribution, such that n1 and n2 are independent. We must note that it is possible to perform the
MC simulations in a more efficient manner using various sampling schemes such as Latin–Hypercube sam-
pling [13,11], etc. However, since we use MC simulations for verification purpose only, such sampling schemes
have not been emphasized here.

In Fig. 8a, we plot the probability density functions for the total capacitance obtained using MC simula-
tions, empirical formula and polynomial chaos expansion of several orders. The results obtained using poly-
nomial chaos converge to the MC results as the order of expansion p is increased. A histogram plot for the
capacitance obtained using polynomial chaos (order p = 3) is shown in Fig. 8b. The mean and standard devi-
ation values for capacitance obtained using various methods are tabulated in Table 3.

5.3. Comb drive

Comb drives form an important class of MEMS devices and have been used in widespread applications
such as micro-accelerometers, hard disk actuators and position controllers. Consider the transverse comb
drive [37] as shown in Fig. 9. The system consists of a center movable stage supported on folded springs
and an array of interdigitated teeth. An electrostatic force is generated when a potential difference is applied
between the fixed teeth and the movable teeth attached to the center stage, which provides a vertical move-
ment. Depending on the manufacturing process, there is always some uncertainty associated with the geomet-
rical features such as the thickness of the movable fingers or fixed teeth, overlap length between the two set of
teeth, etc. The effect of various geometrical features on the design of a comb drive has been studied in [38]
using Monte Carlo method incorporated in the ANSYS probabilistic design system (ANSYS/PDS).

In this example, we consider one pair of teeth as shown in Fig. 9 to separately study the effect of variation in
the thickness T and the length L of the movable teeth, on the capacitance and the net electrostatic force. In the
mean configuration, the thickness is T ¼ 4 lm and the length is L ¼ 60 lm. The smaller and larger gaps
between the two electrodes are 2 lm and 5 lm, respectively. An electrical potential V is applied to the movable
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tooth, while the fixed tooth is grounded. The surface charge density profile for the two teeth in the mean con-
figuration, obtained using a deterministic analysis are shown in Fig. 10. First, we study the effect of variation
in the thickness T of the movable finger, which is represented as
Fig. 10
tooth.
T ðhÞ ¼ T ð1þ mT nÞ; ð61Þ

where n is a Gaussian random variable with unit variance and mT is the percentage variation in T. For this
study, the length L is assumed to be fixed as the mean value L ¼ 60 lm. The variation in the thickness
mT T n, is implemented by applying a random displacement which stretches the movable finger in a symmetric
fashion about the horizontal center plane. The displacement is given as uðx; hÞ ¼ ½0; mT ðy � ycÞn�

T, where yc is
the location of horizontal center plane passing through the movable finger. Using this displacement in the sto-
chastic Lagrangian formulation, the random surface charge density is obtained.

Once the random surface charge density is computed, the capacitance between the two teeth can be com-
puted as described earlier. For this case, in addition to the capacitance between the two teeth, we are also
interested in computing the net electrostatic force acting on the movable finger. The net electrostatic force
in the mean configuration can be obtained by first computing the random electrostatic pressure using Eq.
(55) and then integrating it over the mean surface. For this study, we set mT ¼ 0:1, which corresponds to a var-
iation of 0.4 lm in the thickness. In Fig. 11, we plot the probability density functions for the capacitance, and
the horizontal and vertical components of the force for V = 1 V, using PC expansion of several orders and the
MC simulations. For MC simulations 30,000 realizations have been used. The polynomial chaos results are
not only in agreement with the Monte Carlo simulations, but the convergence also improves with increasing
the order of the PC expansion used. In Fig. 11d, we plot the variation of the mean of the vertical force E½F y �
with applied voltage together with the corresponding error bars �mF y , where mF y represents the standard devi-
ation in the vertical force. The mean and standard deviation in capacitance and force are tabulated in Table 4.
X

Y

. Surface charge density profile on one pair of teeth for the transverse comb drive in the mean configuration, V = 1 V. (a) Fixed
(b) Movable tooth.
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Fig. 11. Effect of 10% variation in the thickness of the movable finger in the transverse comb drive on capacitance and net electrostatic
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function of vertical force Fy. (d) Variation of mean and corresponding error bars of the vertical force with applied voltage V.

Table 4
Mean and standard deviation of capacitance and force for 10% variation in T

MC PC3 PC4

Capacitance [pF/m] Mean · 10�2 3.7854 3.7854 3.7854
Std · 10�1 3.0946 3.0948 3.0949

Horizontal Force Fx [lN] Mean · 100 2.3461 2.3462 2.3462
Std · 101 1.7610 1.7612 1.7611

Vertical Force Fy [lN] Mean · 10�1 5.5486 5.5486 5.5486
Std · 10�1 1.3489 1.3482 1.3488

N. Agarwal, N.R. Aluru / Journal of Computational Physics 226 (2007) 156–179 173
Now we consider the effect of variation in the length of the movable finger L, while fixing the thickness to be
T ¼ 0:2 lm. The length is again modeled as a random variable, and is written as LðhÞ ¼ Lð1þ mLnÞ, where n is
a unit variance Gaussian random variable as before and mL is the percentage variation in L. This variation is
implemented by applying the random displacement uðx; hÞ ¼ ½mLðx� x0Þn; 0�T to the movable finger, where x0

is the x-coordinate where the finger is attached to the movable center stage. We set mL ¼ 0:02, which represents
a variation of 1:2 lm in the length. Similar results, as for the case of uncertain thickness, are shown in Fig. 12
and the corresponding mean and standard deviation values for capacitance and force are tabulated in Table 5.
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Fig. 12. Effect of variation in the length of the movable finger in the transverse comb drive on capacitance and net electrostatic force.
(a) Probability density function of capacitance. (b) Probability density function of horizontal force Fx. (c) Probability density function of
vertical force Fy. (d) Variation of mean and corresponding error bars of the vertical force with applied voltage V.

Table 5
Mean and standard deviation of capacitance and force for 2% variation in L

MC PC3 PC4

Capacitance [pF/m] Mean · 10�2 3.7853 3.7853 3.7853
Std · 100 7.8315 7.8317 7.8316

Horizontal Force Fx [lN] Mean · 100 2.3472 2.3472 2.3472
Std · 102 2.6572 2.6461 2.6553

Vertical Force Fy [lN] Mean · 10�1 5.3414 5.3413 5.3414
Std · 100 1.2812 1.2821 1.2813
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5.4. Cantilever beam over ground plane

We now consider a cantilever beam of length 2a and thickness T ¼ 0:2 lm, located at a gap g over a ground
plane, Fig. 13. We study the effect of stochastic gap g, on the capacitance and the net vertical electrostatic force
acting on the beam. The stochastic gap is modeled as a random field and we employ KL expansion to repre-
sent it in terms of random variables. We assume an exponential covariance kernel, given as
Cðx1; x2Þ ¼ m2
g exp

�r
b

� �
; ð62Þ
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where r ¼ jx1 � x2j, is the distance between points x1 and x2, b and mg are parameters which determine the
number of terms in the KL expansion required for accurate representation of the field. The parameter b is
known as the correlation length and it reflects the rate at which the correlation decays between two points.
A higher value of b leads to rapid decay of the eigenvalues and hence lesser number of terms in the KL expan-
sion. On the other hand, a lower value of b leads to more number of terms in the KL expansion. We note that
for general choice of covariance kernel and domain, the eigenvalues and eigenfunctions need to be computed
numerically. However, for this specific choice of exponential kernel and simple domain, analytical expressions
exist for eigenvalues and eigenfunctions and are given in [14].

Using these eigenvalues and eigenfunctions the stochastic gap can be represented in terms of the random
variables using KL expansion given in Eq. (1) as,
gðx; hÞ ¼ �gðxÞ þ
X1
i¼1

ffiffiffiffi
ki

p
niðhÞfiðxÞ; ð63Þ
where �g ¼ 0:1 lm is the average value of the gap. The eigenvalues for the exponential kernel for a ¼ 1 lm,
b ¼ 1 lm and mg = 1 are shown in Fig. 14.

Since the eigenvalues decay very rapidly, we choose only the first two eigenfunctions in the KL expansion to
represent the stochastic gap. Thus, truncating Eq. (63) at i = 2 leads to,
gðx; hÞ ¼ �g þ
ffiffiffiffiffi
k1

p
f1ðxÞn1 þ

ffiffiffiffiffi
k2

p
f2ðxÞn2; ð64Þ
where n1 and n2 are independent Gaussian random variables with unit variance. This random variation in the

gap is implemented by providing a random translational displacement uðx; hÞ ¼ 0;
P2

i¼1

ffiffiffiffi
ki

p
fiðxÞni

h iT

to the

beam. Various realizations of the random beam geometry together with the mean configuration are shown

in Fig. 15.
The probability density functions for capacitance and net vertical electrostatic force for V = 1 V and

mg = 0.1, obtained using polynomial chaos expansion and Monte Carlo method are shown in Fig. 16. The
polynomial chaos results are shown to be in agreement with the Monte Carlo results. The corresponding val-
ues of mean and standard deviation for capacitance and vertical force are shown in Table 6. The variation
Ground plane

x −a a

T

g

x

Fig. 13. Cantilever beam over a ground plane.
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Fig. 14. Eigenvalues kn, n ¼ 1; . . . ; 20 for the exponential covariance kernel, a ¼ b ¼ 1 lm, mg ¼ 1.
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Fig. 16. Probability density functions for variation in the gap between the cantilever beam and the ground plane, ½mg ¼ 0:1�. (a) Probability
density function of capacitance. (b) Probability density function of net vertical force, V = 1 V.

Table 6
Mean and standard deviation of capacitance and force

MC PC3 PC4

Capacitance [pF/m] Mean · 10�2 2.2937 2.2940 2.2940
Std · 10�1 1.6154 1.6256 1.6258

Vertical force Fy [N] Mean · 103 �1.1167 �1.1171 �1.1171
Std · 104 1.8315 1.8474 1.8481
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considered in the gap results in a variation of 7.0% and 16.5% around mean in the capacitance and vertical
force, respectively.

6. Conclusions

This work presented a general framework to quantify uncertainty arising from geometrical variations in the
electrostatic analysis. The variation in the geometry is modeled as a random field, which is expanded in terms
of independent random variables using either polynomial chaos or Karhunen–Loève expansion. The uncer-
tainty in the geometry is then used as a random displacement field in the Lagrangian boundary integral equa-
tion for electrostatics, to derive the stochastic Lagrangian boundary integral equation. The stochastic
boundary integral equation is then discretized both in the random dimension and space using polynomial
chaos with Galerkin projection and classical boundary element method, respectively.

We considered numerical examples arising from two different applications – first, we considered the mod-
eling of interconnect circuits and studied the effect of geometrical variations on the capacitance. Second, we
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studied the effect of variations in the dimensions and gap between the electrodes, on capacitance and net elec-
trostatic force, during the analysis of MEMS. Using rigorous Monte Carlo simulations, it was shown that the
proposed method accurately predicts the probability density functions and the statistics such as mean and
standard deviation of these parameters. The polynomial chaos results were not only found to be in good agree-
ment with the Monte Carlo results, but also converge to the MC results with the increase in the order of the
chaos expansion. It has been shown in previous work [39,40], that the polynomial chaos is at least an order of
magnitude faster than MC simulations for reasonable dimensionality. Thus, the proposed method is an effec-
tive tool to handle geometrical uncertainties arising in the electrostatic analysis in an accurate and efficient
manner.
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Appendix A. Treatment of nonlinear terms

The spectral modes Gl and cl given in Eq. (37) can be computed in a straightforward manner by considering
a Galerkin projection onto each basis Wl,
GlðP ;QÞ ¼
hGðP ;Q; hÞ;Wli

hW2
l i

; clðQÞ ¼
hcðQ; hÞ;Wli
hW2

l i
; ðA:1Þ
where the integrals hGðP ;Q; hÞ;Wli and hcðQ; hÞ;Wli are computed using numerical quadrature while hW2
l i can

be precomputed using the definition of the basis functions. For an appropriate quadrature rule, this direct
integration procedure would always lead to accurate projections. However, this projection technique can be
expensive as the number of random dimensions increases or when such projections need to be computed
repeatedly. Such a situation may arise when the system is time dependent or is coupled with other physical
fields such as mechanical or fluidic, which requires the computation of these projections at every time step
or iteration step.

The spectral modes Gl and cl can also be computed in a reasonably efficient manner by using some arith-
metic operations on random scalars as given in [41]. For a given source point P and field point Q, the non-
linear functions, GðP ;Q; hÞ and cðQ; hÞ represent random scalars given as,
GðP ;Q; hÞ ¼ � 1

2p�
ln½dðhÞ�cðQ; hÞ ðA:2Þ

cðQ; hÞ ¼ ½TðQÞ � CðQ; hÞTðQÞ�
1
2 ¼ ½aðhÞ�

1
2; ðA:3Þ
where dðhÞ ¼ jP � Qþ uP ðhÞ � uQðhÞj represents the uncertain distance between the source and field points.
Firstly, using the elementary operation for product of random scalars as given in [41], we express aðhÞ and
dðhÞ in terms of the PC basis functions as
aðhÞ ¼
XN

i¼0

aiWi; dðhÞ ¼
XN

i¼0

diWi: ðA:4Þ
Further, we express ln½dðhÞ� and ½aðhÞ�
1
2 in terms of the PC basis functions, using the approach for nonpoly-

nomial functional evaluations for natural logarithm and square root respectively, as given in [41]. Finally,
using these expansions in Eqs. (A.2) and (A.3) and the product operation, we obtain the spectral modes Gl

and cl.
These operations make use of third-order tensor Cijk ¼ hWiWjWki

hW2
k i

; fi; j; k 2 ½0; . . . ;N �3g, which can be precom-

puted and stored to use throughout the computations. We must note that this approach works reasonably well
for cases when the uncertainties in the field variables are moderate and the distribution functions of these vari-
ables are not too skewed. For the numerical examples considered in this work, it was verified that this
approach leads to the same results as obtained using direct numerical quadrature.
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[23] O.P. LeMâitre, M.T. Reagan, H.N. Najm, R.G. Ghanem, O.M. Knio, A stochastic projection method for fluid flow. II. random

process, J. Comput. Phys. 181 (2002) 9–44.
[24] R. Ghanem, W. Brzakala, Stochastic finite-element analysis of soil layers with random interface, J. Eng Mech. 122 (4) (1996) 361–369.
[25] P.L. Liu, D.A. Kiureghian, Finite element reliability of geometrically nonlinear uncertain structures, J. Eng. Mech. 117 (8) (1991)

1806–1825.
[26] S. Acharjee, N. Zabaras, Uncertainty propagation in finite deformations – A spectral stochastic Lagrangian approach, Comput.

Methods Appl. Mech. Eng. 195 (2006) 2289–2312.
[27] G. Dasgupta, A.N. Papusha, E. Malsch, First order stochasticity in boundary geometry: a computer algebra BE development, Eng.

Anal. Boundary Elem. 25 (2001) 741–751.
[28] R. Honda, Stochastic BEM with spectral approach in elastostatic and elastodynamic problems with geometrical uncertainty, Eng.

Anal. Boundary Elem. 29 (2005) 415–427.
[29] S.M. Prigarin, Spectral Models of Random Fields in Monte Carlo Methods, VSP, Utrecht, 2001.
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